
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 210
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

XSS Attack: Detection and Prevention Techniques
Monika Rohilla

Research Scholar, Department of Computer Science & Applications, KurukshetraUniversity,Kurukshetra
Email: mnrohilla508@gmail.com

Rakesh Kumar
Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra

Email: rakeshkumar@kuk.ac.in
GirdharGopal

Assistant Professor,Department of Computer Science &Applications,KurukshetraUniversity,Kurukshetra
Email: girdhar.gopal@kuk.ac.in

Abstract:
Web applications provide access to online services. Web application’s security is the most critical
part of web development. The attacker can exploits the vulnerabilities of web applications by
injecting the malicious code in application which results in theft of cookies and other credential
information. Cross site scripting (XSS) attack is one of the web application vulnerabilities. This
paper discusses about various techniques to detect and prevent XSS attacks like sanitization, input
validation, web proxy, Browser Enforced Embedded Policy (BEEP), Saner, deDcaota, NOXES etc.
The details of these techniques with their shortcomings have been conducted so that one can use
these techniques and tools as applicable to avoid the XSS attacks on Web applications.

Keywords- Cross site scripting (XSS), Detection, Prevention, Vulnerability

1. Introduction

XSS attack is a type of vulnerability mainly
found in web applications and discovered
continuously at alarming rate. XSS attack
operates at application layer. XSS attacks are
very common, an attacker can easily find out the
vulnerable web application. Cross site scripting
attacks are those attacks in which attacker inject
the malicious script usually client side script from
outside the web application environment.
Designing a secure web application is not an easy
task because all web applications require a user
interface so these need to be interactive,
accepting and providing the data from users. The
original CERT advisory defined cross site
scripting attacks as a means by which “malicious
HTML tags or script in a dynamically generated
page based on invalidate input from
untrustworthy sources” [1]. XSS attacks depends
on browser capability to distinguish between
legitimate content served by a web application
and content that has been injected into web
application’s output. An attacker injects a script
into code which executes at client side and affects

the environment. There are various client side
scripting languages, java script [2] is the most
widely used scripting language. Java script can be
used to extract the information from browser
cookies and send it to the attacker for further use.
For example:

<SCRIPT>
document.location = ’http://malicious.com/steal
cookie.php?’ + document.cookie
</SCRIPT>
Click here to collect items

When any user clicks on the above link, HTTP
request is sent to the trusted web site
(http://www.trusted.com) by the web browser.
<SCRIPT>
document. location =
“http://www.malicious.com/steal-cookie.php?
+document.cookie
</SCRIPT>
When a trusted web site receives request, server
decides to include the required file (script) and
browser executes the script. Then cookies set by
trusted web site will be sent to http://evil.com.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 211
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

These cookies will be saved in attacker server.
An attacker can use these cookies to impersonate
the suspected user with respect to trusted site.

1.1 Vulnerability associated with XSS Attack
Vulnerability is a weakness of web application
that can be exploited by an attacker to gain
unauthorized access. Cross site scripting has
various vulnerabilities, some of them are
discussed below.

i. Vulnerability occurs if the incoming input to
the web application is not properly validated.

ii. If a malicious url is present in the web site, by
clicking on malicious url attacker connects a
user to malicious server of his choice for
accessing personal information.

iii. Attacker can easily steal the session
information.

iv. User unknowingly executes the script when he
visits web application.

v. Attacker provides various trusted links, by
clicking on those links, user redirected to
another web site.

vi. Attacker can hack user account and fetch the
credential information, can make misuse of
user cookies and place false advertisement to
web site.

This paper is organized in following section,
section 2 describes the types of attacks and
section 3 describes the literature review of cross
site scripting attacks detection and prevention
techniques. Section 4 presents the conclusion of
paper.

2. Types of XSS Attacks:

 XSS attack can be of three types-
• Persistent attack
• Non persistent attack
• Document Object Model (DOM) based attack

2.1 Persistent Attack
This is very powerful attack that can be spread to
millions of people at the same time. A malicious
script is injected in web application and is
permanently stored on the server. When a user
requests some information from server, injected
script is reflected by a server as an error message

or search result. Persistent XSS attacks are
delivered to users via email or link embedded on
some other web page. Persistent attacks are less
frequent than non-persistent attack. For
exploiting the stored XSS vulnerabilities, firstly
we have to find out the vulnerable web site that
can be used to carry out an attack. The
vulnerabilities which make it possible are
difficult to find. There are some web applications
that allow sharing of contents and vulnerable to
persistent attack like Forums / message boards,
blogging websites, social networks, web-based
email server consoles and web-based email
clients. The malicious code is usually delivered
by the attacker in input fields of vulnerable web
applications. The damage that persistent attack
can do is more destructive than damage done by
non-persistent attacks.

2.2 Non Persistent Attack
It is the most common type of XSS vulnerability.
It targets the website vulnerability that deals with
dynamic property of web application. Every input
has potential to be an attack vector. When users
submit data, it is immediately processed by web
server to generate the result that is sent back to
the browser. If a web application has lack of
encoding schemes and user input validation
methods, an attacker can inject malicious URL
with harmful script code. A non-persistent attack
is typically delivered via emails, social
networking sites and malicious links on the web
site.
Here is Php code that can suffer from non-
persistent XSS attack.
<? php
If(!array_key_exist(“name”,$_GET) ||
$_GET[‘name’]==NULL|| $_GET[‘name’]==””)
{
$isempty=true;
}
else{
echo ‘<pre>’;
echo ‘hello’. $_GET[‘name’];
echo ‘<pre>’;
}
?>

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 212
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

As you can see that the “name” parameter is not
sanitized and echo back to the user. When the
user injects a malicious Java Script code, it will
be executed by the browser and a malformed
result is shown to user.

2.3 DOM Based Attack
DOM (Document Object Model) is a client side
injection. Entire code is originated from the
server that means it is developer’s responsibility
to make a safe web application. All XSS attacks
are executed at the browser. The main difference
between these attacks is where the code is
injected into the application. In DOM [3] based
attack the code is injected from client side during
the run time. The prior condition for a DOM
attack, site is vulnerable to attack and contains
HTML pages that use data from the
document.location, document.url or
document.referrer.

3. Literature Review

Various approaches have been implemented for
detecting the different types of XSS attacks.
There is no standard technique to mitigate and
prevent all types of attacks. A variety of
techniques can be used for the prevention of
client side and server side attacks. Some of these
techniques are as follows.

3.1 Detection of XSS attack
A static string analyzer [4] checks the string
output of a program with context free grammar.
This technique checks the presence of “<script>”
tag in the whole document. As web applications
more often have their own scripts and also there
are several other ways to invoke a JavaScript
interpreter, the approach is not at all practical to
find XSS vulnerabilities. Web request and server
response [5] are used to detect the XSS attack.
The web request parameter passed to the HTML
parser. They modified the HTML, JAVA script
tags, method, method calls and expression with
tokens. The script engine is used to detect the
server response. For detection of web request,
input is analyzed by analyzer and extracts the
malicious links and malicious script as a request

parameter. The features are extracted based on
syntax tree and compared to the white list. If
malicious tags and malicious scripts are present,
alert message of XSS is generated. There was no
requirement of modification in browser or server
engine. It has weak validation from client side
and server side. The web application vulnerability
is detected by a static analysis tool pixy [6]. The
authors address the problem of vulnerable web
application by means of static source code
analysis. The flow sensitivity data flow analysis
was used to discover the vulnerable point in
program. Non persistent attack is detected by
matching the incoming data and outgoing java
script using a simple metric like matching the
incoming data to HTML java script code. Johns
purposed a prototype for detection of reflected
XSS attack [7]. The authors define two tasks that
require special attention: Script extraction and
script parsing. Reliable script extraction:
Detection of reflected attack is a very critical
task. The browser is used for their
implementation, rendering all illegitimate HTML
tags. The identification of all the script is a non-
trivial task [8]. HTML rendering engine of
Mozilla Firefox browser is modified for exactly
matching the script that is executed by the
browser. Java script parser can easily find out the
java script string constant that are valid for java
script code. Their implementation is tested on
HTML based attack vector [8] and they detect all
the attacks reliably but cannot detect other than
HTML based attacks. Script parsing: Both of
their detectors rely on java script tokenizer for
preprocessing. The implementation is done in
Ruby. The tokenization step in XSS detector is a
bottleneck in performance. Jevitha using machine
learning algorithm [9] (Naïve Bayes, Support
vector Machine and J48 Decision Tree) they
classify a normal page and malicious page based
on the feature extracted from URL and java script
code. The web pages are collected which are
infected by java script. The authors extract the
java script code and URL from web pages. The
database is created according to some specified
features which are identified from java script and
URL. This database is used for training the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 213
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

algorithm. After experiment, the authors find that
J48 provides better performance with respect to
FPR (False Positive Rate). But time required for
file creation was greater than NB (Naïve Bayes)
classifier but less than SVM (Support Vector
Machine).

3.2 Prevention of XSS Attack
Prevention of XSS attacks can be distinguished
according to prevention techniques employed at
server side, client side and at the both sides.

3.2.1 Server side prevention of XSS attack
To prevent the cross site scripting in server side,
White box vulnerability scanner and black box
[10] web application testing tool is purposed by
various researchers. To identify the technical
flaws, scanner is the best. A proxy firewall
AppShield [11] is used to mitigate the XSS attack
by learning from the traffic to a specific
application. AppShield is a plug and play
application that provides limited protection from
attacks because it has lack of security policies. A
major drawback of this solution is that it protects
web application at deployment phase rather than
development phase. Server side sanitizer
prevents XSS attack by checking existing
sanitization correctness. It generates input
encoding to match usage context. In sanitization,
clean up the untrusted input that might contain
java script code. Correct sanitization is a
challenging task in web application. It is difficult
to guarantee that all part of web application are
covered [12][13]. Firstly, find all the paths
through which attack can be done. A single input
might appear in different context in the output of
application[14]. HTML input filter [15] is used
against the security of web application in browser
side. A server side solution is proposed against
XSS attacks, this solution is not depends on web
application provider. Cross site scripting
mitigation mode reduces the XSS alert prompt.
The authors reduce the amount of information
leakage in browser side. Mainly the XSS attacks
are based on injecting the malicious java script
code in web pages that is why filtering of web
pages are necessary. A server side solution allows
easy integration of filter (Java Script Filter) in

java based application. A novel approach
Dynamic Hash Generation[16] makes the cookies
useless for the attacker. This approach is easy to
implement on web server without any changes
required on web browser. In this technique, a
hash value is calculated at the server side for the
name attribute of cookies and then this sent to the
browser. This hash value is used by the web
server to authenticate the user at the browser side.
In this experiment, the version 0 cookie is used.
The purposed technique does not affect the
performance of client side web browser and there
is no single point of failure. It is a server side
solution; it affects the performance of whole
system. It takes time to generate the hash value at
the server side. This technique is not work with
version 1 cookie because it adds an extra
attribute, Port Number. Major disadvantage of
this solution is that it does not intercept the HTTP
and SSL connection.
The code and data is separated from the web
pages. deDacota [17]statically rewrites the
existing application to separate the code and data.
The static analysis is used to find out all inline
java script code in web pages. In static analysis it
is not easy to find out all HTML output. Some
benign developer computes the HTML output
statically. There is a second order problem,
dynamic inline script. deDacota provides the
partial solution to this problem. It provides alert
message for all dangerous instances of dynamic
java script generation in web application and
safely sanitizes these instances. A prototype of
deDacota is implemented to analyze and rewrite
ASP.Net web applications. The authors applied
this tool on six open source web applications and
found that all the XSS vulnerabilities are
eliminated. The performance test is applied to
check the functionality of web application and
they found, there is no difference in page loading
time of original and rewritten applications.

3.2.2 Client side prevention of XSS
 In general XSS attacks are easy to execute, but
difficult to prevent. A client side solution is not
easy, because malicious java script code is
difficult to identify. NOXES [18]was the first

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 214
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

client side solution to mitigate the cross site
scripting attack. It was a Microsoft-Window
based personal web firewall application. It acts as
a web proxy. The links which contain HTML
elements with src, href attribute, url and CSS
(Cascading Style Sheet) file is extracted. All links
are passed through the NOXES can either be
blocked or allowed based on the current security
policy. It allows the user to create rules for web
requests. It track the links visited by the browser
and automatically create the permanent filter rule
based on the specific domain collected during the
session. NOXES focuses on ensuring the
confidentiality of sensitive data by analyzing the
flow of data through the browser. Duraisamy
[19]described web proxy to protect the
information leakage from the user environment.
Client side solution does not depend upon web
application provider. This solution mitigates the
cross site scripting attack and reduces the number
of connection alert. Shalini [20]purposed a model
that provides a client side solution which does not
degrade the performance of application. It
provides efficient security from the XSS attacks
with optimized web browsing. The
implementation is done using open source
Mozilla Firefox 1.5 web browser. They compared
the purposed browser with Firefox, Microsoft’s
Internet Explorer, Apple’s safari web browser
and other available web browser on some
platform and environment. The test is performed
using data collected from the white hat and black
hat sites. This system successfully detects and
removes a number of XSS attacks.

3.2.3 Client side as well as server side prevention
of XSS
Static and dynamic analysis is used to identify the
faulty sanitization procedure that can be bypassed
by an attacker. A tool saner [12] was used for
implementation. Experiment was done on various
real world applications. They identified the novel
vulnerability that stem from incorrect and
incomplete sanitization. A static analysis tool [6]
was used for detecting the web application
vulnerability. Flow sensitivity, inter procedural
and context sensitivity data flow analysis was

used to discover vulnerable point in program.
Static analysis provide false positive. If the
number of false positive is large it means site is
vulnerable to XSS attack, so they perform
dynamic analysis. Goal of dynamic analysis was
to examine the entire path from source to sink.
Dynamic analysis was performed by checking the
code with various input value which have
different way of encoding, then try to understand
which type of input be a cause of security
violation. In Browser enforced embedded
policy[21] modified the web application and
embedded some policies. Policy contains a hook
function that will run before execution of any
script. Modified browser check each java script to
security hook function. The policy was flexible in
nature. In first policy they used whitelist in which
hook function uses one way hash to script. When
browser parses a script, check it with security
hook function . If hook returns true then script is
legitimate otherwise it will be rejected. Second
policy was DOM sandboxing takes a blacklist.
Modifications to browser and web application are
not difiicult to perform but some browser can not
support hook function. BEEP did not provide any
guidance to trust on third party. According to our
web application it suffers from scalability
problem.
4. Conclusion

XSS attacks are easy to perform but difficult to
prevent. Several approaches have been proposed
to detect and prevent the XSS attacks. These
solutions are either client side or server side that
protects a web application against XSS attacks
like web proxy firewall at application layer.
Scanner best suited to identify the technical flaws
but less capable to recognize business flaws.
White box tool exactly find the vulnerability,
why and how they are occurred but generate a
large number of false positive. Generally
solutions are depending on the service provider to
aware of the XSS attack and take appropriate
action to mitigate the threat. But existing
approaches are not sufficient for traditional web
applications, some of them are relying on end
user for protection of key aspect of a service. In

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 215
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

this paper author discusses detection and
prevention techniques of the XSS attacks with
their merits and demerits.

References

[1] CERT. Advisory, “Malicious HTML tags
embedded in client web request,” 2000.

[2] ECMA-261, “ECMA Script Language
Specification,” 1999.

[3] OWASP, “DOM Based XSS -
https://www.owasp.org/index.php/DOM_B
ased_XSS,” 2013.

[4] Y. Minamide, “Static Approximation of
Dynamically Generated Web Pages,” in
WWW '05 Proceedings of the 14th
international conference on World Wide,
New York, NY, USA, 2005.

[5] H. Vigna, “Detecting malicious JavaScript
code in Mozilla,” in 10th IEEE
International Conference on Engineering
of Complex Computer Systems
(ICECCS'05), 2005.

[6] N. Jovanovic, C. Kruegel and E. Kirda,
“Pixy: a static analysis tool for detecting
Web application vulnerabilities,” in 2006
IEEE Symposium on Security and Privacy
(S&P'06), Berkeley/Oakland, CA, 2006.

[7] M. Johns, B. Engelmann and J. Posegga,
“XSSDS: Server-Side Detection of Cross-
Site Scripting Attacks,” in Computer
Security Applications Conference, 2008.
ACSAC 2008. Annual, Anaheim, CA, 2008.

[8] Hansen, “Cross- Site Scripting Cheat
Sheet,” 05 05 2007. [Online]. Available:
http://hacker.org/XSS.html.

[9] V. B. A and J. K. P, “Prediction of Cross
Site Scripting Attack Using Machine
Learning Algorithm,” in ICONIAAC,
Amritapuri India, 2014.

[10] Acunetix, 2008. [Online]. Available:
http://www.acunetix.com.

[11] D. Scott and R. Sharp, “Abstracting
application-level web security,” in WWW

'02 Proceedings of the 11th international
conference on World Wide Web, ACM
New York, NY, USA, 2002.

[12] D. Balzarotti, M. Cova, V. Felmetsger, N.
Jovanovic, E. Kirda, C. Kruegel and G.
Vigna, “Paper Review: Saner: Composing
Static and Dynamic Analysis to Validate
Sanitization in Web Applications.,” in
Security and Privacy, 2008 IEEE
symposium, Oakland CA, 2008.

[13] B. Akhawe, F. Saxsena and S. Weinberge,
“A Systematic Analysis od XSS
Sanitization in Web Application
Framework,” in ESORICS'11 Proceeding
of the 16th European Conference on
Research in Computer Security, 2011.

[14] P. Saxena, D. Molnar and B. Livshits,
“ScriptGard: Automatic Context-Sensitive
Sanitization for Large-Scale Legacy Web
Applications,” in CCS'11, Chicago, Illinois,
USA, 2011.

[15] A. Duraisamy, M. Sathiyamoorthy and S.
Chandrasekar, “A Server Side Solution for
Protecting of Web Application from Cross
Siye Scripting Attack,” International
Journal Of Innovative Technology and
Exploring Engineering (IJITEE), vol. 2, no.
4, March 2013.

[16] S. Gupta, L. Sharma , . M. Gupta and S.
Gupta, “Prevention of Cross-Site Scripting
Vulnerabilities using Dynamic Hash
Generation Technique on the Server Side,”
International Journal of Advanced
Computer Research , vol. 2, no. 5, pp. Start
Page- 49, 2012.

[17] A. Doupe, W. Cui and M. H. Jakubowski,
“deDcota: Toward Preventing Server - Side
XSS via Automatic Code and Data
Seperation,” in CCS'11, Berlin Germany,
2013.

[18] E. Kirda, N. Jovanovic, C. Kruegel and G.
Vigna, “Client - Side Cross Site Scripting
protection,” 2009.

[19] Duraisamy, Kannan and Selvamani,
“Protection of Web Application from Cross

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 216
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Site Scripting Attack in Browser Side,”
IJCSIS, pp. 229-236, 2010.

[20] S. and U. , “Prevention of Cross Site
Scriptig Attack (XSS) on Web Application
In The Client Side,” IJCSI International
Journal Of Computer Science Issue, 2011.

[21] T. Jim, N. Swamy and M. Hicks,
“Defeating Script Injection Attacks with
Browser - Enforced Embedded Policies,” in

Interntional World Wide Conference
Committee (IW3C2), Canada, 2007.

IJSER

http://www.ijser.org/

